32 research outputs found

    Impact of corpus callosum fiber tract crossing on polarimetric images of human brain histological sections: ex vivo studies in transmission configuration.

    Get PDF
    SIGNIFICANCE Imaging Mueller polarimetry is capable to trace in-plane orientation of brain fiber tracts by detecting the optical anisotropy of white matter of healthy brain. Brain tumor cells grow chaotically and destroy this anisotropy. Hence, the drop in scalar retardance values and randomization of the azimuth of the optical axis could serve as the optical marker for brain tumor zone delineation. AIM The presence of underlying crossing fibers can also affect the values of scalar retardance and the azimuth of the optical axis. We studied and analyzed the impact of fiber crossing on the polarimetric images of thin histological sections of brain corpus callosum. APPROACH We used the transmission Mueller microscope for imaging of two-layered stacks of thin sections of corpus callosum tissue to mimic the overlapping brain fiber tracts with different fiber orientations. The decomposition of the measured Mueller matrices was performed with differential and Lu-Chipman algorithms and completed by the statistical analysis of the maps of scalar retardance, azimuth of the optical axis, and depolarization. RESULTS Our results indicate the sensitivity of Mueller polarimetry to different spatial arrangement of brain fiber tracts as seen in the maps of scalar retardance and azimuth of optical axis of two-layered stacks of corpus callosum sections The depolarization varies slightly () with the orientation of the optical axes in both corpus callosum stripes, but its value increases by 2.5 to 3 times with the stack thickness. CONCLUSIONS The crossing brain fiber tracts measured in transmission induce the drop in values of scalar retardance and randomization of the azimuth of the optical axis at optical path length of . It suggests that the presence of nerve fibers crossing within the depth of few microns will be also detected in polarimetric maps of brain white matter measured in reflection configuration

    Robustness of the wide-field imaging Mueller polarimetry for brain tissue differentiation and white matter fiber tract identification in a surgery-like environment: an ex vivo study.

    Get PDF
    During neurooncological surgery, the visual differentiation of healthy and diseased tissue is often challenging. Wide-field imaging Muller polarimetry (IMP) is a promising technique for tissue discrimination and in-plane brain fiber tracking in an interventional setup. However, the intraoperative implementation of IMP requires realizing imaging in the presence of remanent blood, and complex surface topography resulting from the use of an ultrasonic cavitation device. We report on the impact of both factors on the quality of polarimetric images of the surgical resection cavities reproduced in fresh animal cadaveric brains. The robustness of IMP is observed under adverse experimental conditions, suggesting a feasible translation of IMP for in vivo neurosurgical applications

    Congenital Plasmodium falciparum infection in neonates in Muheza District, Tanzania

    Get PDF
    BACKGROUND\ud \ud Although recent reports on congenital malaria suggest that the incidence is increasing, it is difficult to determine whether the clinical disease is due to parasites acquired before delivery or as a result of contamination by maternal blood at birth. Understanding of the method of parasite acquisition is important for estimating the time incidence of congenital malaria and design of preventive measures. The aim of this study was to determine whether the first Plasmodium falciparum malaria disease in infants is due to same parasites present on the placenta at birth.\ud \ud METHODS\ud \ud Babies born to mothers with P. falciparum parasites on the placenta detected by PCR were followed up to two years and observed for malaria episodes. Paired placental and infant peripheral blood samples at first malaria episode within first three months of life were genotyped (msp2) to determine genetic relatedness. Selected amplifications from nested PCR were sequenced and compared between pairs.\ud \ud RESULTS\ud \ud Eighteen (19.1%) out of 95 infants who were followed up developed clinical malaria within the first three months of age. Eight pairs (60%) out of 14 pairs of sequenced placental and cord samples were genetically related while six (40%) were genetically unrelated. One pair (14.3%) out of seven pairs of sequenced placental and infants samples were genetically related. In addition, infants born from primigravidae mothers were more likely to be infected with P. falciparum (P < 0.001) as compared to infants from secundigravidae and multigravidae mothers during the two years of follow up. Infants from multigravidae mothers got the first P. falciparum infection earlier than those from secundigravidae and primigravidae mothers (RR = 1.43).\ud \ud CONCLUSION\ud \ud Plasmodium falciparum malaria parasites present on the placenta as detected by PCR are more likely to result in clinical disease (congenital malaria) in the infant during the first three months of life. However, sequencing data seem to question the validity of this likelihood. Therefore, the relationship between placental parasites and first clinical disease need to be confirmed in larger studies
    corecore